Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
在构建医学成像数据集以进行深度学习方面,要注释下一步是一个具有挑战性的问题。解决这个问题的有前途的方法之一是主动学习(AL)。但是,关于哪些AL算法和采集功能最有用的数据集,AL一直很难破解。同样,当要开始的数据零标记时,问题会加剧,首先要标记哪个卷。这就是AL中的冷启动问题。我们针对3D图像分割提出了两种新型策略。首先,我们通过提出代理任务,然后利用从代理任务产生的不确定性来解决冷门问题,以对要注释的未标记数据进行排名。其次,我们为每个主动迭代制作了一个两阶段的学习框架,其中未标记的数据在第二阶段也被用作半监督的微调策略。我们展示了我们对来自医学分割十项全能的两个著名大型公共数据集的方法的希望。结果表明,数据和半监督框架的初始选择都显示出几种AL策略的显着改善。
translated by 谷歌翻译
脑肿瘤的语义分割是一个基本的医学图像分析任务,涉及多个MRI成像方式,可以帮助临床医生诊断患者并先后研究恶性实体的进展。近年来,完全卷积神经网络(FCNNS)方法已成为3D医学图像分割的事实标准。受欢迎的“U形”网络架构在不同的2D和3D语义分割任务和各种成像方式上实现了最先进的性能基准。然而,由于FCNNS中的卷积层的核心大小有限,它们的建模远程信息的性能是次优的,这可能导致具有可变尺寸的肿瘤分割的缺陷。另一方面,变压器模型在捕获多个域中的这种远程信息,包括自然语言处理和计算机视觉中的卓越功能。灵感来自视觉变形金刚的成功及其变体,我们提出了一种新的分割模型,被称为往返博物馆变压器(Swin Unet)。具体地,3D脑肿瘤语义分割的任务被重新重整为序列预测问题的序列,其中多模态输入数据被投射到嵌入的1D序列并用作作为编码器的分层SWIN变压器的输入。 SWIN变压器编码器通过利用移位窗口来提取五个不同分辨率的特征,以通过跳过连接在每个分辨率下连接到每个分辨率的基于FCNN的解码器。我们参与了Brats 2021分割挑战,我们所提出的模型在验证阶段的最佳方法中排名。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
视觉变形金刚(VIT)S表现出可观的全球和本地陈述的自我监督学习表现,可以转移到下游应用程序。灵感来自这些结果,我们介绍了一种新的自我监督学习框架,具有用于医学图像分析的定制代理任务。具体而言,我们提出:(i)以新的3D变压器为基础的型号,被称为往返变压器(Swin Unet),具有分层编码器,用于自我监督的预训练; (ii)用于学习人类解剖学潜在模式的定制代理任务。我们展示了来自各种身体器官的5,050个公共可用的计算机断层扫描(CT)图像的提出模型的成功预培训。通过微调超出颅穹窿(BTCV)分割挑战的预先调整训练模型和来自医疗细分牌组(MSD)数据集的分割任务,通过微调训练有素的模型来验证我们的方法的有效性。我们的模型目前是MSD和BTCV数据集的公共测试排行榜上的最先进的(即第1号)。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
Fully Convolutional Neural Networks (FCNNs) with contracting and expanding paths have shown prominence for the majority of medical image segmentation applications since the past decade. In FCNNs, the encoder plays an integral role by learning both global and local features and contextual representations which can be utilized for semantic output prediction by the decoder. Despite their success, the locality of convolutional layers in FCNNs, limits the capability of learning long-range spatial dependencies. Inspired by the recent success of transformers for Natural Language Processing (NLP) in long-range sequence learning, we reformulate the task of volumetric (3D) medical image segmentation as a sequence-to-sequence prediction problem. We introduce a novel architecture, dubbed as UNEt TRansformers (UNETR), that utilizes a transformer as the encoder to learn sequence representations of the input volume and effectively capture the global multi-scale information, while also following the successful "U-shaped" network design for the encoder and decoder. The transformer encoder is directly connected to a decoder via skip connections at different resolutions to compute the final semantic segmentation output. We have validated the performance of our method on the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) dataset for multiorgan segmentation and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Our benchmarks demonstrate new state-of-the-art performance on the BTCV leaderboard. Code: https://monai.io/research/unetr
translated by 谷歌翻译
Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning. Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge. While considerable research has focused on learning multiple input distributions, typically in classification, lifelong reinforcement learning (LRL) must also deal with variations in the state and transition distributions, and in the reward functions. Modulating masks, recently developed for classification, are particularly suitable to deal with such a large spectrum of task variations. In this paper, we adapted modulating masks to work with deep LRL, specifically PPO and IMPALA agents. The comparison with LRL baselines in both discrete and continuous RL tasks shows competitive performance. We further investigated the use of a linear combination of previously learned masks to exploit previous knowledge when learning new tasks: not only is learning faster, the algorithm solves tasks that we could not otherwise solve from scratch due to extremely sparse rewards. The results suggest that RL with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
translated by 谷歌翻译
这项工作使用水果和叶子的图像提出了一个基于学习的植物性诊断系统。已经使用了五个最先进的卷积神经网络(CNN)来实施该系统。迄今为止,模型的精度一直是此类应用程序的重点,并且尚未考虑模型的模型适用于最终用户设备。两种模型量化技术,例如float16和动态范围量化已应用于五个最新的CNN体系结构。研究表明,量化的GoogleNet模型达到了0.143 MB的尺寸,准确度为97%,这是考虑到大小标准的最佳候选模型。高效网络模型以99%的精度达到了4.2MB的大小,这是考虑性能标准的最佳模型。源代码可在https://github.com/compostieai/guava-disease-detection上获得。
translated by 谷歌翻译
强化学习(RL)的成功在很大程度上取决于从环境观察中学习强大表示的能力。在大多数情况下,根据价值功能的变化,在各州之间纯粹通过强化学习损失所学的表示形式可能会有很大差异。但是,所学的表示形式不必非常具体地针对手头的任务。仅依靠RL目标可能会产生在连续的时间步骤中变化很大的表示形式。此外,由于RL损失的目标变化,因此所学的表示将取决于当前价值/策略的良好。因此,从主要任务中解开表示形式将使他们更多地专注于捕获可以改善概括的过渡动态。为此,我们提出了局部约束的表示,辅助损失迫使国家表示由邻近状态的表示可以预测。这不仅鼓励表示形式受到价值/政策学习的驱动,还可以自我监督的学习来驱动,这会限制表示表示的变化太快。我们在几个已知的基准上评估了所提出的方法,并观察到强劲的性能。尤其是在连续控制任务中,我们的实验比强基线显示出显着的优势。
translated by 谷歌翻译
指定的实体识别(NER)或从临床文本中提取概念是识别文本中的实体并将其插入诸如问题,治疗,测试,临床部门,事件(例如录取和出院)等类别的任务。 NER构成了处理和利用电子健康记录(EHR)的非结构化数据的关键组成部分。尽管识别概念的跨度和类别本身是一项具有挑战性的任务,但这些实体也可能具有诸如否定属性,即否定其含义暗示着指定实体的消费者。几乎没有研究致力于将实体及其合格属性一起确定。这项研究希望通过将NER任务建模为有监督的多标签标记问题,为检测实体及其相应属性做出贡献。在本文中,我们提出了3种架构来实现此多标签实体标签:Bilstm N-CRF,Bilstm-Crf-Smax-TF和Bilstm N-CRF-TF。我们在2010 I2B2/VA和I2B2 2012共享任务数据集上评估了这些方法。我们的不同模型分别在I2B2 2010/VA和I2B2 2012上获得最佳NER F1分数为0. 894和0.808。在I2B2 2010/VA和I2B2 2012数据集上,获得的最高跨度微积的F1极性得分分别为0.832和0.836,获得的最高宏观平均F1极性得分分别为0.924和0.888。对I2B2 2012数据集进行的模态研究显示,基于SPAN的微平均F1和宏观平均F1的高分分别为0.818和0.501。
translated by 谷歌翻译
大多数强化学习算法都利用了经验重播缓冲液,以反复对代理商过去观察到的样本进行训练。这样可以防止灾难性的遗忘,但是仅仅对每个样本都分配了同等的重要性是一种天真的策略。在本文中,我们提出了一种根据样本可以从样本中学到多少样本确定样本优先级的方法。我们将样本的学习能力定义为随着时间的推移,与该样品相关的训练损失的稳定减少。我们开发了一种算法,以优先考虑具有较高学习能力的样本,同时将优先级较低,为那些难以学习的样本,通常是由噪声或随机性引起的。我们从经验上表明,我们的方法比随机抽样更强大,而且比仅在训练损失方面优先排序更好,即时间差损失,这是在香草优先的经验重播中使用的。
translated by 谷歌翻译